中图分类号:
R969.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GOLDSMITH P. Zebrafish as a pharmacological toolThe how, why and when. Curr Opin Pharm, 2004, 4(5):504-512.
[2] LIANG A. Zebrafish--useful model for pharmacodynamics and toxicity screening of traditional Chinese medicine. Chin J Chin Mater Med(中国中药杂志), 2009, 34(22):2839-2842.
[3] SUKARDI H, CHNG H T, CHAN E C Y, et al. Zebrafish for drug toxicity screeningBridging the in vitro cell-based models and in vivo mammalian models. Expert Opin Drug Metab Toxicol, 2011, 7(5):579-589.
[4] KITAMBI S S, NILSSON E S, SEKYROVA P, et al. Small molecule screening platform for assessment of cardiovascular toxicity on adult zebrafish heart. BMC Physiol, 2012, 12(1):3-9.
[5] CHEN Q X, ZENG S. Research progress of zebrafish used in drug metabolism. Acta Pharm Sin(药学学报), 2011, 46(9):1026-1031.
[6] THOMPSON E D, BURWINKEL K E, CHAVA A K, et al. Activity of Phase I and Phase II enzymes of the benzo pyrene transformation pathway in zebrafish (Danio rerio) following waterborne exposure to arsenite. Comp Biochem Physiol C Toxicol Pharmacol, 2010, 152(3):371-378.
[7] ALMEIDA D V, DA SILVA NORNBERG B F, GERACITANO L A, et al. Induction of phase Ⅱ enzymes and hsp70 genes by copper sulfate through the electrophile-responsive element (EpRE)Insights obtained from a transgenic zebrafish model carrying an orthologous EpRE sequence of mammalian origin. Fish Physiol Biochem, 2010, 36(3):347-353.
[8] BRESOLIN T, DE FREITAS REBELO M, CELSO DIAS BAINY A. Expression of PXR, CYP3A and MDR1 genes in liver of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol, 2005, 140(3):403-407.
[9] JIANG J S, WEI Y J, JIA X B, et al. Advances in studies on pharmacological effect and structure-activity relationship of chrysin and its derivatives. Chin Tradit Herb Drugs(中草药), 2011, 42(11):2345-2350.
[10] WALLE T, OTAKE Y, BRUBAKER J A, et al. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol, 2001, 51(2):143-146.
[11] WALLE U K, GALIJATOVIC A, WALLE T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem Pharmacol, 1999, 58(3):431-438.
[12]GALIJATOVIC A, OTAKE Y, WALLE U K, et al. Extensive metabolism of the flavonoid chrysin by human Caco-2 and Hep G2 cells. Xenobiotica, 1999, 29(12):1241-1256.
[13] SINGH R, WU B, TANG L, et al. Identification of the position of mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (lambdamax) generated from an online diode array detector. J Agric Food Chem, 2010, 58(17):9384-9395.
[14] WONG Y C, ZHANG L, LIN G, et al. Intestinal first-pass glucuronidation activities of selected dihydroxyflavones. Int J Pharm, 2009, 366(1-2):14-20.
[15] ZHOU Y, LU L, LI Z, et al. Antidepressant-like effects of the fractions of Xiaoyaosan on rat model of chronic unpredictable mild stress. J Ethnopharmacol, 2011, 137(1):236-244.
[16] TANG B, DING J, WU F, et al. H-NMR-based metabonomics study of the urinary biochemical changes in Kansui treated rat. J Ethnopharmacol, 2012, 141(1):134-142.
[17] WEI Y J, NING Q, JIA X B, et al. Thoughts and methods for metabol ic study of Chinese materia medica based on zebrafish model. Chin Tradit Herb Drugs(中草药), 2009, 40(7):1009-1011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(30973978);江苏省中医药领军人才专项资助项目
{{custom_fund}}